7,407 research outputs found

    The obstacle problem for the infinity fractional laplacian

    Get PDF
    Given g an α-H¨older continuous function defined on the boundary of a bounded domain Ω and given ψ a continuous obstacle defined in Ω, in this article, we find u an α-H¨older extension of g in Ω with u ≥ ψ. This function u minimizes the α-H¨older semi-norm of all possible extensions with these properties and it is a viscosity solution of the associated obstacle problem for the infinity fractional Laplace operator.Fil: Moreno Mérida, Lourdes. Universidad de Granada; EspañaFil: Vidal, Raúl Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentin

    Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations

    Full text link
    In this paper we explore the transmission properties of single subwavelength apertures perforated in thin metallic films flanked by asymmetric configurations of periodic arrays of indentations. It is shown how the corrugation in the input side can be used to transmit selectively only two different wavelengths. Also, by tuning the geometrical parameters defining the corrugation of the output side, these two chosen wavelengths can emerge from the structure as two very narrow beams propagating at well-defined directions. This new ability of structured metals can be used as a base to build micron-sized wavelength de-multiplexers.Comment: Accepted for publication in Photonics and Nanostructure

    Fir system identification using a linear combination of cumulants

    Get PDF
    A general linear approach to identifying the parameters of a moving average (MA) model from the statistics of the output is developed. It is shown that, under some constraints, the impulse response of the system can be expressed as a linear combination of cumulant slices. This result is then used to obtain a new well-conditioned linear method to estimate the MA parameters of a nonGaussian process. The proposed approach does not require a previous estimation of the filter order. Simulation results show improvement in performance with respect to existing methods.Peer ReviewedPostprint (published version

    Non-reciprocal few-photon devices based on chiral waveguide-emitter couplings

    Full text link
    We demonstrate the possibility of designing efficient, non reciprocal few-photon devices by exploiting the chiral coupling between two waveguide modes and a single quantum emitter. We show how this system can induce non-reciprocal photon transport at the single-photon level and act as an optical diode. Afterwards, we also show how the same system shows a transistor-like behaviour for a two-photon input. The efficiency in both cases is shown to be large for feasible experimental implementations. Our results illustrate the potential of chiral waveguide-emitter couplings for applications in quantum circuitry.Comment: Mathematica notebook attached for calculation of detection probabilitie

    Edge and waveguide THz surface plasmon modes in graphene micro-ribbons

    Get PDF
    Surface plasmon modes supported by graphene ribbon waveguides are studied and classified. The properties of both modes with the field concentration within the ribbon area (waveguiding modes) and on the edges (edge modes) are discussed. The waveguide and edge modes are shown to be separated from each other by a gap in wavenumbers. The even-parity hybridized edge mode results to be the fundamental electromagnetic mode of the ribbon, possessing also the lowest losses. All the plasmonic modes in the ribbons have an optimum frequency, at which the absorption losses are minimum, due to competition between the plasmon confinement and the frequency dependence of absorption in graphene.Comment: 4 pages, 4 figure

    On the transmission of light through a single rectangular hole

    Full text link
    In this Letter we show that a single rectangular hole exhibits transmission resonances that appear near the cutoff wavelength of the hole waveguide. For light polarized with the electric field pointing along the short axis, it is shown that the normalized-to-area transmittance at resonance is proportional to the ratio between the long and short sides, and to the dielectric constant inside the hole. Importantly, this resonant transmission process is accompanied by a huge enhancement of the electric field at both entrance and exit interfaces of the hole. These findings open the possibility of using rectangular holes for spectroscopic purposes or for exploring non-linear effects.Comment: Submitted to PRL on Feb. 9th, 200

    A chiral route to spontaneous entanglement generation

    Full text link
    We study the generation of spontaneous entanglement between two qubits chirally coupled to a waveguide. The maximum achievable concurrence is demonstrated to increase by a factor of 4/e∼1.54/e \sim 1.5 as compared to the non-chiral coupling situation. The proposed entanglement scheme is shown to be robust against variation of the qubit properties such as detuning and separation, which are critical in the non-chiral case. This result relaxes the restrictive requirements of the non-chiral situation, paving the way towards a realistic implementation. Our results demonstrate the potential of chiral waveguides for quantum entanglement protocols.Comment: 5 pages + 1 page supplemental, 4 figure

    Terahertz surface plasmon polariton propagation and focusing on periodically corrugated metal wires

    Get PDF
    In this letter we show how the dispersion relation of surface plasmon polaritons (SPPs) propagating along a perfectly conducting wire can be tailored by corrugating its surface with a periodic array of radial grooves. In this way, highly localized SPPs can be sustained in the terahertz region of the electromagnetic spectrum. Importantly, the propagation characteristics of these spoof SPPs can be controlled by the surface geometry, opening the way to important applications such as energy concentration on cylindrical wires and superfocusing using conical structures.Comment: accepted at PRL, submitted 29th May 200
    • …
    corecore